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Fig. 2—Variation of m with@ for vsriorrs values of R.
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Frg. 5—Predicted and measured VSWR of
broad-band rotary joint.

basis may give a result similar to the above
analysis. This indeed is the case. If 21 and

22 in (1) through (7) are replaced by Y1 and
Y*, respectively, these equations will give

the response of a choke type rotary joint and
at the same time will point out a method of

broadbanding such a rotary joint. Broad-

banding may be achieved by reducing the

Fig. 3—Variation of ?aIZZ with bandwidth.
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Fig. 4—Z1 as a function of bandwidth for
various stub impedances.

Although the above analysis assumed a

coaxial stub it is obvious that the aualysis

can be applied to other TEM transmission
lines and to waveguides. In particular it

may be applied to the problem of making an

extremely broad-band T junction for a
branched duplexer.

Aix EXTREMELY BROAD-BAND
ROTARY JOINT

Electrically a choke type rotary joint
consists of an open-circuited quarter-wave-
length stub in series with a transmission line.
A comparison with the broad-band stub of
the previous section, which is a short-cir-

cuited quarter-wavelength stub in parallel
with the line, suggests that an analysis of the

choke type rotary joint on an admittance

sion line by the proper amount for a quarter

wavelength on either side of the chokes.

Physically, this may be accomplished by de-
creasing the radius of the inner conductor or

increasing the radius of the outer conductor
of a coaxial line rotary joint.

A broad-band rotary joint using the

above theory has been built and tested in

three and one-eighth inch coaxial line. The
predicted and measured results are shown

in Fig. 5. The measured results agree quite

well with the theory except in the region

near 1100 mc. This can be explained by the
lack of the theory in accounting for the
capacitive discontinuity at the end of the

series choke in the inner conductor and the
effect of the short-circuited high impedance
quarter-wave section at the end of the series
choke in the outer conductor.

The sum of the characteristic impedances
of the inner and outer chokes was 3.3 ohms

and the main line had an impedance of 50
ohms. The rotary joint was designed to have

a VSWR less than 1.04 over a 135 per cent

bandwidth. For the same VSWR with no

compensation the bandwidth would have

been 70 per cent.
In conclusion the above analysis maybe

used to broadband any quarter-wavelength
choke or stub type discontinuity and ac-
curately predict its performance.

C. E. MUEEE

Lincoln Lab.

Mass. Inst. Tech.

Lexington, Mass

Comments on Ozaki’s Comments*

Ozaki’sl comments have drawn my atten-

tion to the fact that there is a significant
difference between “The Synthesis Theorem”

* Received by the PGMTT, October 30, 195$.
I H. Clzaki, “On Riblet’s theorem, n IRE TRANS. ON

MICROWAVE THEORY AND TECHNIQUES, vol. MTT-6,
pP. 331-332; July, 1958.
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given in my paperz and the retstztement of it

that is given and proven in the Appendix.
If we define 1 to be the degree, the maximum

of the degrees of the numerator and the de-

nominator, of the rational function Z(P),

and r to be the number of line sections in the

impedance transformer, then in the first

statement of the theorem, ~is unspecified and

n = r while in the second statement 1= n and

r is unspecified. Now the second theorem is
correct$ even in view of ozaki’s comments,
and accordingly is adequate fc)r a proof of
the physical realizability of the allowed in-
sertion loss functions. The first theorem,
however, is incorrectly stated as Ozaki’s

example has shown.
Ozaf&s third condition, “Assuming that

the numerator and denominator of Z(p) in

(1) are prime to each other, the degrees of
both the numerator and denominator must

be equal to n,” correctly requires that

1= n and adds the rest.ricticm that the
numerator and denominator of Z(P) con-

tain no common factors.
The requirement that the degree of the

numerator of Z(p) equal the clegree of the
denominator is a salient feature of the
theory. My failure to define 1= n, which has

this consequence when taken with condition
2, in the first statement of the theorem, was

simply an oversight. I permittec[ the removal

of common factors3 in the second statement
of the theorem by not specifying r, since it

is readily shown that the removal of a com-
mon factor from the numerator and de-

nominator of a Z(A), satisfying condition 28

results in a Z’(o) which again satisfies this

condition
Ozaki’s third condition oermits the moof

of a sharper theorem than my application
required? namely one in which Z= n = r. His
condition, however, is unnecessarily restric-

tive since the relative primeness of the
numerator and denominator is not a neces-

sary condition for the truth of this class of
theorem. For example, if the termkrating re-

sistance, R, is preceded by a section of line

of characteristic impedance,, R, then the
numerator and denominator of Z(P) contain

the common factor, P+ 1. In fact it is readily

demonstrated that the only cotnrnon factors

permitted by condition 2 are products of
P+ 1 and @– 1. The first can be realized
while the occurrence of the latter would
result in the indeterminacy of Z(l).

A more general theorem c~f this type can
be stated:

The necessary and sufficient conditions

that a rational function of ;D, determinant

for P= 1, with real coefficients, of degree
at most n in numerator or deuomina tor

written in the form

with nzl and ntr odd or even and nl and n~
even or odd, be the input impedance of a
cascade of w equal-length transmission line
sections terminated in a resistance are:

9 H. J. Riblet, “General synthesis of quarter-wave
impedance transformers, ” IRE TRA.NS. ON MICRO-
WAVE THEORY AND TECHNIQUES, vol. MTT-5. PP.
36-43; January, 1957.

8 For exzmple, the well-known result that a posi-
tive real function of $ is a quotient of two Hurwitz
polynomials is true in general onbr if tbe remOval Of
common factors from numerator ancl denominator is
permitted,
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1) Z(P) must be a positive real function

of p;

2) ?m(P)m2(@) –?21(P)?22(P) = C(P2– 1)”.

Condition 2 implies that both numerator
and denominator are of degree n and it is
readily argued that an impedance function
formed by terminating a section of trans-
mission line in an indeterminant impedance

function will remain indeterminant. Further-

more if Z(P) is normalized so that the coeffi-

cient of P“ in Its denominator is unity then C

equals the terminating resistance.

HENRY J. RIBLET

Microwave Dev. Labs., Inc.
Wellesley, Mass.

Vector Formulations for the Field

Equations in Anisotropic Wave-

guides*

In the following we will exhibit vector
formulations for the equations determining
the different components of the electromag-
netic field in a source-free uniform wave-

guide. All results will be stated without
proof. The derivations are given elsewhere.1
The vector formulations given below are

~pplicable to uniform waveguides contain-
ing anisotropic media restricted only by the

requirement that the permittivity (s) and

permeability (V) dyadics be independent of

the axial coordinate z. For uniform wave-
guides (with the indicated restriction on v

and e) we consider solutions to the Maxwell
equations which display characteristic time
and z dependence of the form exp ;(KZ — cot).

This assumption permits us to eliminate the
z and t dependence from the Maxwell equa-

tions and rewrite these as:

E

‘[ 1
= o, (1)

iH

Here, as iu all the matrix equations which
follow, dot product multiplication is to be
understood for the products of dyadics and
vectors. In (1), E and 27 are, respectively,
the steady-state electric and magnetic fields;
V, is the transverse gradient operator; zo is

the unit vector in the axial direction; 1 is the

unit dyadic; and 1 t is the unit transverse

dyadic:

It is well known that the transverse field

components, Et and Ht, constitute the inde-

pendent field components. To eliminate the
dependent longitudinal components from

* Received by the PGMTT, October 31, 195s. Tbk
note is based on a study undertaken pursuant to Con-
tract AF-19(604)-2301 with the AF Cambridge Res.
Center.

i A. D. Bresler, “Vector Formulations for the Elec-
tromag~etic Field Equ?tions in Uniform Wave~”ides
Containing Amsotropic Media, ” Microwave Res.
Inst., Polytechnic Inst. of BmokSyn, Brooklyn, N. Y.,
Rep. R-676-58; September, 1958.

(1) it is convenient to express, e.g., the s where D(K), X, 523 are defined in (7)–(9) and:

dyadic as

(3)

where si is a transverse dyadic, W, and s.~
are vectors, and G is a scalar; i.e.,

A similar representation is chosen for the u
dyadic. It can then be shown that the

(independent) transverse field components
satisfy the following pair of (coupled)

second-order differential equations (trans-

verse vector eigenvalue problem):

[
- (Ma$

3= ZoxVt

1°
(12)

Zox Vt —w%t

Note that, in general, 1/D(K) does not com-

mute with either !3 or 3 since these contain

differentiation operations. The reader may

verify that the result in (11) reduces to the
equation given by Kalesz for the special case

of an axially magnetized gyromagnetic
medium (i.e., where e is a scalar and

Vf, =g.t =0).
Any solution E., H. to (11) yields, via

(7), an eigenfunction (mode) of the trans-
verse vector eigenvalue problem (5). This

Once solutions to (5) are obtained, the cor-

responding longitudinal field components

can be determined from a knowledge of the

transverse components via

c

‘::[i::vt~$:l”[:l’

In general, to obtain solutions to the

transverse vector eigenvalue problem (5) is
a formidable task. We recall that even in the

case of isotropic waveguides such solutions

are usually obtained by replacing the vector

eigenvalue problem by a pair of scalar
eigenvalue problems whose eigenfunctions
are (except in the case of TEM modes) pro-

portional to the longitudinal field compo-
nents. A similar technique maybe employed

in the general auisotropic situation under
consideration here. It can be shown that the
transverse field components are derivable
from the longitudinal field components via

where

D(K) = K4 + CNK2 Tr (ZOXW .zo)(st) + ti4A&

(8)

+ ~z

[

L#zoxp, xzo —2’KZoxlt

1
, (9)

‘iKZOxlt (ozlJxttxzo

(lo)

A, and AP are the determinants of (the matrix
representations of) the w and w dyadics, re-

spectively, and Tr (zo XW. zo X si) is the

trace of (the matrix representation for) the
dyadic ZOXW ..o X% Further, it can be
shown that the longitudinal field components
satisfy the following pair of (coupled)

second-order differential equations (scalar
eigenvalue problem):

procedure is manifestly not valid when

D(K) =0. Therefore, the set of vector eigen-

functions obtained from all the solutions to

(11) becomes complete only when we add

such vector eigenfunctions of (5) which are
admitted when D(K) = O. That these addi-

tional eigenfunctions are the analogs of the
TEM modes in the anisotropic case is evi-
dent from the fact that D(.) = (dpe –.92 for
an isotropic medium with scalar p and e. The
analogy to TEM modes indicated here
should not be taken to imply any TEM-like
properties of these eigenfunctions in the

anisotropic case.

A. D. BRESLER

Microwave Res. Inst.
Polytechnic Inst. of Brooklyn

Brooklyn, N.Y.

q M. L. Kales, “Modes in wavegaides that contain
~9rr~tes, ” J. A15ji. Phys., vol. 24, pp. 604-608: May,

.

An Extension of the Reflection Co-

efficient Chart to Include Active

Networks*

INTRODUCTION

At a single frequency, a two-port can be
represented by the scattering matrix [1], [5]

[b] = [.s][a] (la)

bl = sllal + sna~ (lb)

bl = s21a1 + s2%a2 (It)

where s12= szl in the reciprocal two-port. If

one defines an input reflection coefficient
I’~fi = &l/al and a load reflection coefficient
TL =at/bt one can form

~. _ (S122 – SuS22)rL + S11

*n
1 – S22rL

(2)

Eq. (2) can be considered as a mapping
of the rL plane into the I’tn plane. Since this
is a bilinear transformation, angles between

* Received by the PGMTT, November 17, 1958.


