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Fig. 3—Variation of m:1Z» with bandwidth.
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Fig. 4—Z, as a function of bandwidth for
various stub impedances.

Although the above analysis assumed a
coaxial stub it is obvious that the analysis
can be applied to other TEM transmission
lines and to waveguides. In particular it
may be applied to the problem of making an
extremely broad-band T junction for a
branched duplexer.

AN EXTREMELY BrOAD-BAND
RoOTARY JOINT

Electrically a choke type rotary joint
consists of an open-circuited quarter-wave-
length stub in series with a transmission line.
A comparison with the broad-band stub of
the previous section, which is a short-cir-
cuited quarter-wavelength stub in parallel
with the line, suggests that an analysis of the
choke type rotary joint on an admittance
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Fig. 5—Predicted and measured VSWR of
broad-band rotary joint.

basis may give a result similar to the above
analysis. This indeed is the case. If Z; and
Zsin (1) through (7) are replaced by ¥y and
Vs, respectively, these equations will give
the response of a choke type rotary joint and
at the same time will point out a method of
broadbanding such a rotary joint. Broad-
banding may be achieved by reducing the
characteristic admittance of the transmis-
sion line by the proper amount for a quarter
wavelength on either side of the chokes.
Physically, this may be accomplished by de-
creasing the radius of the inner conductor or
increasing the radius of the outer conductor
of a coaxial line rotary joint.

A broad-band rotary joint using the
above theory has been built and tested in
three and one-eighth inch coaxial line. The
predicted and measured results are shown
in Fig. 5. The measured results agree quite
well with the theory except in the region
near 1100 mc. This can be explained by the
lack of the theory in accounting for the
capacitive discontinuity at the end of the
series choke in the inner conductor and the
effect of the short-circuited high impedance
quarter-wave section at the end of the series
choke in the outer conductor.

The sum of the characteristic impedances
of the inner and outer chokes was 3.3 ohms
and the main line had an impedance of 50
ohms. The rotary joint was designed to have
a VSWR less than 1.04 over a 135 per cent
bandwidth, For the same VSWR with no
compensation the bandwidth would have
been 70 per cent.

In conclusion the above analysis may be
used to broadband any quarter-wavelength
choke or stub type discontinuity and ac-
curately predict its performance.

C. E. MUEHE
Lincoln Lab,
Mass. Inst. Tech.
Lexington, Mass

Comments on Ozaki’s Comments™

Ozaki’s' comments have drawn my atten-
tion to the fact that there is a significant
difference between “The Synthesis Theorem”

* Received by the PGMTT, October 30, 1958,

i H, Ozaki, “On Riblet’s theorem,” IRE TrANS, oN
MicrowAave THEORY AND TECHNIQUES, vol. MTT-6,
pp. 331-332; July, 1958.
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given in my paper? and the restatement of it
that is given and proven in the Appendix.
If we define ! to be the degree, the maximum
of the degrees of the numerator and the de-
nominator, of the rational function Z(p),
and 7 to be the number of line sections in the
impedance transformer, then in the first
statement of the theorem, [ is unspecified and
n =7 while in the second statement I =#» and
7 is unspecified. Now the second theorem is
correct, even in view of Ozaki's comments,
and accordingly is adequate for a proof of
the physical realizability of the allowed in-
sertion loss functions. The first theorem,
however, is incorrectly stated as Ozaki's
example has shown.

Ozaki's third condition, “Assuming that
the numerator and denominator of Z(p) in
(1) are prime to each other, the degrees of
both the numerator and denominator must
be equal to #,” correctly requires that
I=n and adds the restriction that the
numerator and denominator of Z(p) con-
tain no common factors.

The requirement that the degree of the
numerator of Z(p) equal the degree of the
denominator is a salient feature of the
theory. My failure to define /=, which has
this consequence when taken with condition
2, in the first statement of the theorem, was
simply an oversight. I permitted the removal
of common factors? in the second statement
of the theorem by not specifying 7, since it
is readily shown that the removal of a com-
mon factor from the numerator and de-
nominator of a Z(p), satisfying condition 2,
results in a Z'(p) which again satisfies this
condition

Ozaki’s third condition permits the proof
of a sharper theorem than my application
required, namely one in which /=n=r. His
condition, however, is unnecessarily restric~
tive since the relative primeness of the
numerator and denominator is not a neces-
sary condition for the truth of this class of
theorem, For example, if the terminating re-
sistance, R, is preceded by a section of line
of characteristic impedance, R, then the
numerator and denominator of Z(p) contain
the common factor, p-+1. In fact it is readily
demonstrated that the only common factors
permitted by condition 2 are products of
p+1 and p—1. The first can be realized
while the occurrence of the latter would
result in the indeterminacy of Z(1).

A more general theorem of this type can
be stated:

The necessary and sufficient conditions
that a rational function of p, determinant
for p=1, with real coefficients, of degree
at most # in numerator or denominator
written in the form

ORI

= ma(p) + ma(p)

with m and me odd or even and »: and #.
even or odd, be the input impedance of a
cascade of # equal-length transmission line
sections terminated in a resistance are:

2 H. J. Riblet, “General synthesis of quarter-wave
impedance transformers,” IRE TrANs. ON Micro-
wAvE THEORY AND TECHNIQUES, vol. MTT-5, pp.
36--43; January, 1957. B

3 For example, the well-known result that a posi-
tive real function of p is a quotient of two Hurwitz
polynomials is true in general only if the removal of
common factors from numerator and denominator is
permitted,
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1) Z(p) must be a positive real function

of p;
2) my(pyms(p) —m(P)na(p) = C(P*—1)m

Condition 2 implies that both numerator
and denominator are of degree » and it is
readily argued that an impedance function
formed by terminating a section of trans-
mission line in an indeterminant impedance
function will remain indeterminant. Further-
more if Z(p) is normalized so that the coeffi-
cient of " in its denominator is unity then C
equals the terminating resistance.

Henry J. RIBLET
Microwave Dev. Labs., Inc.
Wellesley, Mass.

Vector Formulations for the Field
Equations in Anisotropic Wave-
guides*

In the following we will exhibit vector
formulations for the equations determining
the different components of the electromag-
netic field in a source-free uniform wave-
guide. All results will be stated without
proof. The derivations are given elsewhere.!
The vector formulations given below are
applicable to uniform waveguides contain-
ing anisotropic media restricted only by the
requirement that the permittivity (¢) and
permeability (u) dyadics be independent of
the axial coordinate 2. For uniform wave-
guides (with the indicated restriction on u
and &) we consider solutions to the Maxwell
equations which display characteristic time
and z dependence of the form exp (ks —wt).
This assumption permits us to eliminate the
z and ¢ dependence from the Maxwell equa-~
tions and rewrite these as:

[ we —V,:Xl—iIch)Xlt]
— Vi X1—ixzoX1; oy

I:zfi] =0

Here, as in all the matrix equations which
follow, dot product multiplication is to be
understood for the products of dyadics and
vectors. In (1), E and H are, respectively,
the steady-state electric and magnetic fields;
V, is the transverse gradient operator; zg is
the unit vector in the axial direction; 1 is the
unit dyadic; and 1; is the unit transverse
dyadic:

Li=1—1,=1— zz. 2

It is well known that the transverse field
components, E; and H,, constitute the inde-
pendent field components. To eliminate the
dependent longitudinal components from

* Received by the PGMTT, October 31, 1958. This
note is based on a study undertaken pursuant to Con-
gacit: AF-19(604)-2301 with the AF Cambridge Res.

enter,

1 A, D, Bresler, *Vector Formulations for the Elec-
tromagnetic Iield Equations in Uniform Waveguides
Containing Anisotropic Media,” Microwave Res.
Inst., Polytechnie Inst. of Brooklyn, Brocklyn, N. V.,
Rep. R-676-58; September, 1958,
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(1) it is convenient to express, e.g., the €

dyadic as
e [8‘ s"] ®)
€2t €2

where g; is a transverse dyadic, =, and e
are vectors, and ¢, is a scalar; i.e.,

g = g + el + ZoEst + £¢2Z0. (4)

A similar representation is chosen for the u
dyadic. It can then be shown that the
(independent) transverse field components
satisfy the following pair of (coupled)
second-order differential equations (trans-
verse vector eigenvalue problem):

April

where D(x), %, B are defined in (7)—(9) and:

= —wey  ZoX Vi
B = ] 12
Z2oXV:  —wtia 42

Note that, in general, 1/D(x) does not com-
mute with either B or 9B since these contain
differentiation operations. The reader may
verify that the result in (11) reduces to the
equation given by Kales? for the special case
of an axially magnetized gyromagnetic
medium (Z.e,, where ¢ is a scalar and
Uta'—"yzt:O)-

Any solution E., H, to (11) yields, via
(7), an eigenfunction (mode) of the trans-
verse vector eigenvalue problem (5). This

= 1 1 2] €12 Y .
(wst—*‘szZo"‘ZOXVt——‘SzzSzt :ZOXVt‘{“VtxZo_—ZKZoxlg) E,
w £

Mz €x

eat 1 1 ®
E-”—zzo)(vt—}-V,XZo—z—lKZoXlz) (wyt——szzo—ZOXVr——‘ytzyzt> iH,
© ®

Mz €z

Once solutions to (5) are obtained, the cor-
responding longitudinal field components
can be determined from a knowledge of the
transverse components via

EZ
iH,
1 1
——ty ——zZXWV: E;
.
= “ : (©)
1 1 .
20X Vi —— Uz iH,
Wz Mz

In general, to obtain solutions to the
transverse vector eigenvalue problem (5) is
a formidable task. We recall that even in the
case of isotropic waveguides such solutions
are usually obtained by replacing the vector
eigenvalue problem by a pair of scalar
eigenvalue problems whose eigenfunctions
are (except in the case of TEM modes) pro-
portional to the longitudinal field compo-
nents. A similar technique may be employed
in the general anisotropic situation under
consideration here. It can be shown that the
transverse field components are derivable
from the longitudinal field components via

E; E,
D [ - AB [ :I 7
©| m, i, o
where
D(x) = x*+ %2 Tr (ZoXu: 20Xer) + DAy,
®
ng_l ’L‘KS;_‘I *Zg xg;_l]
= RN
A= B ”[ikye‘l‘zo)(u_l oyt
2 wzoXyu: X zo —-l'KZoxle] 9
TR Xl wmXeXzod T
B = [—wstz Vtxzo] ’ (10)
v: Xz Wiz

Acand A, are the determinants of (the matrix
representations of) the e; and . dyadics, re-
spectively, and Tr (zoXu:-zoXe:) is the
trace of (the matrix representation for) the
dyadic zoXu;-zoXe. Further, it can be
shown that the longitudinal field components
satisfy the following pair of (coupled)
second-order differential equations (scalar
eigenvalue problem):

ézEa o i)I Ez
=B — 11
[iqu z] B D(x) B [:iH s an

™

=0. ()

2z z

procedure is manifestly not valid when
D{x) =0, Therefore, the set of vector eigen-
functions obtained from all the solutions to
(11) becomes complete only when we add
such vector eigenfunctions of (5) which are
admitted when D(x) =0. That these addi-
tional eigenfunctions are the analogs of the
TEM modes in the anisotropic case is evi-
dent from the fact that D(x) = («?ue—«2)? for
an isotropic medium with scalar g and e. The
analogy to TEM modes indicated here
should not be taken to imply any TEM-like
properties of these eigenfunctions in the
anisotropic case.
A. D. BRESLER
Microwave Res. Inst.
Polytechnic Inst. of Brooklyn
Brooklyn, N.Y.

2 M. L. Kales, “Modes in waveguides that contain
i%x:%tes,” J. Appl. Phys., vol. 24, pp. 604-608; May,

An Extension of the Reflection Co-
efficient Chart to Include Active
Networks*

INTRODUCTION

At a single frequency, a two-port can be
represented by the scattering matrix [1], [}

[2] = [S]]e] (1a)
by = sua + S0 (1b)
by = s + Sas02 (10)

where si=su in the reciprocal two-port. If
one defines an input reflection coefficient
Tin=D01/a; and a load reflection coefficient

T'z==as/bs one can form

(512 — suse)T'r, + sut
Tip= —o WM LT (9
1 — sl'z,

Eq. (2) can be considered as a mapping
of the T'z plane into the T';, plane. Since this
is a bilinear transformation, angles between

# Received by the PGMTT, November 17, 1958.



